The Polarographic Behavior of Hydroxylycoctonine

By Shozo Yamada

(Received February 19, 1964)

Hydroxylycoctonine^{1,2)} exhibited well-defined polarographic waves in an acidic medium. As is shown in Table I and in Fig. 1, the first wave was observed in the pH range of $2\sim8$ and the second in the pH range of $5\sim8$; the heights of both waves became smaller as the pH became greater, and the waves entirely disappeared at pH values greater than 8.

Table I. Half-wave potential and wave height of hydroxylycoctonine in Britton-Robinson buffer solution 1.2 mmol./l; $m^{2/3}t^{1/6}=1.26 \text{ mg}^{2/3} \text{ sec}^{-1/2}$

pН	$E_{1/2}$, -V. vs. SCE		i_d , μ amp.	
	ī	II	ī	II
1.9	0.73		3.648	
3.9	0.75		3.648	
4.3	0.755		3.498	
4.85	0.76		3.318	
5.45	0.765		2.712	
5.9	0.77	1.725	1.464	3.0
6.9	0.775	1.725	0.240	1.56
7.75	unmeasurable			

Ι

$$\begin{array}{c} +H^{\bullet} \\ -H_{2}O \\ \longleftarrow +OH^{-} \end{array}$$

$$\begin{array}{c} H_{3}CO \\ \longleftarrow \\ -N \\ CH_{3}OH \\ OCH_{3} \\ OH \\ \end{array}$$

$$II$$

A slope of 10 mV. per unit change of pH in the $E_{1/2}\sim$ pH curve, a slope of 80 mV. in the log $(i/i_d-i)\sim E$ curve at pH 1.9, and an $E_{1/4}-E_{3/4}$ value of 100 mV. at pH 1.9 were obtained, these values confirming the irreversibility of

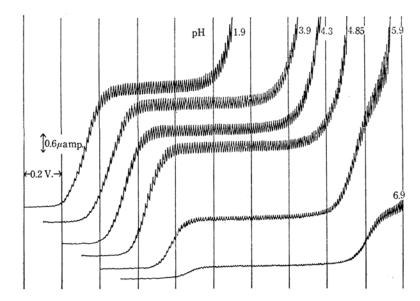


Fig. 1. Polarograms of hydroxylycoctonine in buffers at various pH values. (Curves start from $-0.4 \, \text{V}_{\cdot}$)

¹⁾ H. Suginome and K. Ohno, J. Fac. Sci., Hokkaido Univ., Ser. III, Chem., 4, 36 (1950).

²⁾ O. E. Edwards and L. Marion, Can. J. Chem., 30, 627 (1952).

the electrode process. The irreversibility was observed also in the a.c. polarography of hydroxylycoctonine.

Applying Ilkovic equation with the D value estimated from the molecular weight, n=2.0 was obtained.

From the $i_a \sim pH$ curve the apparent pK_a of hydroxylycoctonine was assumed to be 5.8; this value was concordant with the reported pK_a (5.8) in a 50% methanol solution.³⁾

The limiting current of the wave was confirmed to be diffusion-controlled from the relationship between the height of the mercury column and the limiting current height; it was linearly proportional to the concentration between 0 and 0.27 mmol./l. at pH 1.9.

This polarographic behavior of hydroxylycoctonine can be readily interpreted from the defined structures^{3,4)} of hydroxylycoctonine (I) and its anhydronium salt (II). Therefore, it is considered that the first wave of the polarogram is due to the $>C=N^+<$ bond and the second to the ketone group in II,* which is formed in an acidic medium.

Similar behavior was observed also in the polarography of acetylanhydrolycoctonine** and of anhydrolycoctonine.***

Further details of the experiment will be published shortly.

Osaka City Institute of Hygiene Kita-ku, Osaka

³⁾ O. E. Edwards, M. Los and L. Marjon, ibid., 37, 1996 (1959).

⁴⁾ Z. Valenta, Chem. & Ind., 1959, 633; Z. Valenta and I. G. Wright, Tetrahedron, 9, 284 (1960).

^{*} The same immonium structure as that in hydroxyly-coctonine has been reported in the case of diacetyldelcosine (T. Amiya and T. Shima. J. Org. Chem., 26, 2616 (1961)).

^{**} Suginome's monoacetyl derivative, m. p. 132~133°C; 1) $C_{27}H_{41}O_7N$, [α] $_D^{31}+11^\circ$, ν_{max}^{Nujol} 1730, 1224 (ester), 1721 cm⁻¹

^{***} Alkali hydrolysis product of acetylanhydrolycoctonine; $C_{25}H_{39}O_6N$, m. p. 158~160°C, $[\alpha]_D^{28}+21$ °, ν_{max}^{Nulol} 3497 (OH), 1721 cm⁻¹(C=O).